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Estimating damage laws from bend-test 
data 

A. R. ROSENFIELD,  D.K. SHETTY,  W.H. DUCKWORTH 
Battelle's Columbus Laboratories, Columbus, Ohio 43201, USA 

Bend-test curves were calculated for materials obeying three very different damage laws. 
One result of the calculations is that the neutral axis migrates towards the compression 
face as the load-point displacement increases. For the three damage laws investigated, 
there is a simple relationship between the location of the neutral axis and the secant 
modulus derived from the bend-test record; this relationship is quite insensitive to the 
exact form of the damage law. The stress at a point 20 per cent of the beam depth from 
the tensile outer fibre is also fairly insensitive to the form of the damage law. Combining 
these two observations, it is possible to use bend-test data to make a good estimate of the 
tensile stress--strain curve of a material subject to damage. 

1. Introduction 
Damage theory has been developed to describe the 
difference in tensile and compressive behaviour of 
materials. For example, otherwise identical test 
specimens containing arrays of microcracks will be 
more compliant in tension than in compression. 
More generally, damage theory is intended to 
account for such processes as the formation of 
pores and microcracks in ceramics deforming by 
creep under tensile load [1]. The theory is 
particularly important in analysing bending where 
both stress states are developed in a single speci- 
men. As examples of such applications Krajcinovic 
[2] has successfully compared tensile and bending 
strengths of  concrete, and Talty and Dirks [3] 
have explained the difference in creep rates of 
Si3N4 in compression and bending. 

A problem with application of damage theory 
to bending is that the form of the damage relation- 
ship must be assumed. This paper describes a 
method for approximating the relationship based 
solely on bend data. The method utilizes calcu- 
lations which indicate that certain characteristics 
of the experimental bend-test record do not 
depend on the form of the constitutive relation- 
ship. 

2. Analysis 
Constitutive relationships associated with three 
different damage laws were chosen for use in the 
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analysis. The criterion for selection was to provide 
a wide variation in the moment/curvature relation. 
The damage laws are: 

1. An adaptation of Finnie's [4] creep-damage 
law to rate-independent deformation: 

comp  ss o  
a = A E e  (1) 

< 1, tension 

Equation 1 will be referred to as the "elastic" 
relationship. For example, it describes the 
situation where the material contains pre-existing 
cracks which open, but do not grow or multiply 
under tensile loads. 

2. The "elastic-plastic" relationship of Hoag- 
land, et  al. [5] 

e = a lE;  e <~ S / E  
(2) 

o = S; e >1 S / E  

Equation 2 describes a possible case of flaw 
formation and growth initiating at some fixed 
tensile stress, S. 

3. The conventional linear-damage law, as used 
by Krajcinovic [2, 6],  for example, corresponds to 
the case where damage is proportional to the 
tensile strain and is characterized by a stress, D: 

a = Ee; e ~< 0 
(s) 

a = E e ( 1 - - E e / D ) ;  e >~ 0 
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Figure 1 Constitutive relationships for three different 
damage laws. 

Note that a and e in Equations 1 to 3 are engineer- 
ing stress and strain, respectively. 

Fig. 1 shows the form of the three different 
constitutive relationships. For comparison 
purposes the constants in Equations 1 and 2 have 
been chosen so that all curves pass through the 
maximum of Equation 3. To do so, A (Equation 1) 
was set equal to 1/2 and S (Equation 2) was set 
equal to D/4.  Moment-curvature relationships 
were derived from standard beam theory using a 
procedure similar to that of  Shetty and Gordon 
[7] for damage-free creep specimens. The 
procedure is described in the Appendix. Briefly, 
the calculation involves the evaluation of stress 
and strain distributions in terms of the location of 
the neutral axis. This procedure follows the 
observation of Krajcinovic [2] who noted that the 
location of the neutral axis moves away from the 
tension face as loading proceeds*. The separation 
of the neutral axis from the tension face, YT, was 
expressed in terms of a parameter,/~, where 

H 
YT - (4) 1+/3 

In practice, load-displacement records can be 
converted into moment-curvature relationships 
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Figure 2 Moment-curvature curves for three different 
damage laws. Dashed line is damage-free curve. 

which in turn can be expressed in terms of/3 and 
related to nominal stress (Onom) and strain (enom), 
defined as 

6M 
Onom B H  2 , (5) 

where M is applied moment, B is beam thickness, 
and H is beam depth; and 

H 
enom = - -  (6) 

2p 

where 19 is the radius of curvature. The resulting 
nominal stress/nominal strain relationships are 
given in Table I. The result for the "elastic" law 
has a fundamental difference from those for the 
other laws: in the elastic case the neutral axis is 
displaced from the beam mid-height but does not 
move as loading proceeds. 

Fig. 2 does show the desired difference in 
moment-curvature relationships, varying from 
linear for the "elastic" law of Equation 1, 
approaching an asymptote (%om = 3D/4) for the 
"elastic-plastic" law of Equation 2, to passing 
through a maximum for the linear-damage law of 
Equation 3. The calculation for the linear-damage 
law was terminated when the outer-fibre stress 
dropped to zero, corresponding to eno m = 

0.788D/E. 

*Krajcinovic [2] also stated that the motion of the neutral axis eventually changes direction. This result arose from 
carrying the linear damage calculations beyond the point where the outer-fibre stress passes through zero (e = DIE in 
Equation 1) creating spurious negative outer-fibre stresses. 
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T A B L E I Characteristic relationships for bend-bars obeying different damage laws 

Elastic law, Elastic-plastic law, Linear damage law, 
Equation 1 Equation 2* Equation 3 

stress against [ 2~ ~2 4a 2 (3 --a) (4)(/~ 2 +/3/8 - -  1/8) Nominal 
nominal strain / 1 + ~ (1 + c~) 3 (1 + f l )2  

~no~4Eenor. \ I 

Stress at any depth, (1+/3)[1 (1H~)Z ] 1 2z (/)(1 --f) 
z, below the tensile 2 - - ~ ;  ~ = 1  
outer fibre, a(z ) /  

O'no m 

z (1 + cO ~ ] 
X 1 # ~ - + ~  ; 

z / H <  (1--~)/(1 + a) 

l + a  1 - -a  
; z / H  >>- - -  

3 - - a  l + c ~  

(3)(1 --13)(/3 = + #/8 -- 1/8) ' 

where 

f =  ~ (1--~ ~) 1 - ~ ( 1 + ~ )  

a is the distance from the neutral axis to the point where the "yield stress" is reached; # = 2~/(1 + c~2). 

From these calculations it is clear that the 
moment-curvature  relationship can be calculated 
if one knows the damage law in advance. Provided 
the elastic modulus is known, the damage law can 
be evaluated from a tensile test. However, tensile 
testing of  brittle materials requires great care 
whereas bend testing is considerably simpler. For 
this reason, it is useful to ask whether the damage 
law can be deduced if the only information 
available is the bend-test result. In other words, 
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Figure 3 D i s t a n c e  o f  n e u t r a l  ax i s  f r o m  t e n s i o n  su r f ace  is 

g iven b y  HI(1 + ~). 

given curves such as shown in Fig. 2, how can 
curves such as those shown in Fig. 1 be generated? 

Consider first the calculation of  strain. A 
complete description of  the strain distribution is 
possible, provided the curvature and the location 
o f  the neutral axis are both known. In the present 
analysis the term /3 (Equation 4) describes the 
location of  the neutral axis. Examination of  the 
numerical results used to generate Fig. 2 showed 
that the moment-curvature  secant modulus 
depends strongly on /3 and only weakly on the 
exact form of  the damage law (see Fig. 3). 

If  the secant modulus is denoted as 

r = OnomlEeno=, (7) 

the curves in Fig. 3 are well approximated by 

fl = ~ ( 5 r  1) (8) 

Denoting e as the strain at a distance z below the 
tensile surface 

Y T  m Z  
- ( 9 )  

P 

and combining Equations 4, 6, 7 and 9 

e - 2 5 r  
6norn  

As discussed below, the value of  e at z = 0.2 H is 
of  particular interest since the stress at that location 

9 3 7  



0 
(a) 0.5 

I I I I 
0.6 0.7 0.8 0.9 1.0 

1,0 

0.8  
E 
O 

b = 0 .6  

0.4 - -  

b 0 . 2 - -  

1.0 

0.8 

b ~ 0.6 

0.4 "C 
0.2 

@ 

__ - - - - - - - - - -  | 

I I I I 
(b) 0.5 0.6 0.7 0.8 0.9 

Secant Modulus, O"norn/E,~no m 

1.0 

Figure 4 Local stress in a bend 
bar. (a) tensile surface; (b) 0.2// 
below tensile surface. 

is fairly insensitive to the form of the damage law 

(23-  1 
e(z = 0.2H) ~ 0.4enom \ 5 - ~ - ~ 1 "  (11) 

The calculation of local stress requires a dif- 
ferent approach from the calculation of local 
strain. Table I lists the tensile stress distributions 
associated with the individual damage laws. These 
distributions can be calculated from Equations 1 
to 3 since strain can be calculated from Equation 
10. Note that the equations are given in terms of 
the location of the neutral axis (/3), while the calcu- 
lation below utilizes the experimentally measurable 
secant modulus, ~. In the stress calculation below 
the individual relations between ~ and ~ (Table I) 
were used instead of  the average q}/~3 relation 
(Equation 8). 

The calculation of the stress distribution reveals 
a striking dependence of outer-fibre stress on 
damage law (Fig. 4a). The figure shows that the 
linear-elastic result (o = Ono m = 6M/BH 2) is valid 
only if the moment-curvature relationship reflects 
no damage. Increasing departures of the exper- 
imental bend-test record from linearity are 
accompanied by increasing departures of the 
outer-fibre stress from Onom. 

A simple reference stress method [8] was used 
to investigate whether the stress at any interior 
location is independent of secant modulus. The 
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equations in Table I were used and by trial-and- 
error the value of z = 0.2 H was selected with the 
results given in Fig. 4b. The damage-free linear- 
elastic value of o at this location is 

o(z = 0.2H) = 0.6 ~ o =  (I2) 

while the differences in different damage laws 
results in o = (0.6 _+ O.1)Onom. 

The above information allows construction of 
the tensile stress-strain curve. The construction 
involves measurement of load and displacement 
for a number of points on the bend-test record. 
These values are converted into Onom and enorn 

using Equations 5 and 6. The associated stresses 
and strains are then calculated from Equations 11 
and 12 to provide the desired tensile curve. 

3. Discussion 
The approach described in this paper provides a 
method of estimating the damage law without 
performing a tensile test. This is an advantage since 
bend tests are much simpler to perform and much 
freer from measurement error than tensile tests. 
However, there are several compensating problems. 
A principal problem is that the procedure is not 
completely general. For example, if a material has 
the same non-linear behaviour in tension and com- 
pression, the moment-curvature relationship will 
also be non-linear but the neutral axis will not 
migrate. To determine whether a bend bar is in 



this category one could physically examine the 
specimen for preferential damage in the tensile 
region (e.g., cracks, pores). In addition to the 
above problem, it is possible to construct damage 
laws in which the neutral axis does not migrate. 
A simple example is the "perfectly-plastic" 
damaged material 

o = Oo ; compression 
(13) 

o = A o o , A  < 1; tension. 

Further research is required to define the consti- 
tutive relationships which fall in the latter 
category. 

The final problem with the analysis is that it is 
not necessarily adequate to define the fracture 
load of the bend bars. To illustrate this point, 
consider the "elastic" damage law, Equation 1. As 
noted above, this law describes the situation where 
pre-existing cracks open but do not grow. Equation 
1 has no terminus within the framework of the 
model. An additional condition needs to be added: 
the specimen will fail when the stress intensity on 
the most dangerous flaw reaches Kie for the 
material. An additional complication is that the 
cracks may begin to extend at some critical stress 
level due to environmentally assisted growth, thus 
lowering the specimen compliance and altering the 
form of the damage law during the test. 

This illustration suggests that the other damage 
models may need analogous modification. More 
generally it is possible that the mechanism of 
damage changes at a critical stress or strain and/or 
a failure criterion needs to be added to the model. 
In contrast, Krajcinovic [2] has argued that there 
is only one damage mechanism and that the maxi- 
mum load in Fig. 2 defines failure. In addition to 
postulating a simple damage law, this approach 
does not take the statistical nature of fracture into 
account. In this view [6], the damage law reflects 
the defect distribution within the material. 
However, scatter in fracture strength is not pre- 
dicted since the damage modulus, D, is tacitly 
assumed to be an invariant material property. If, 
however, D is assumed to be statistically distri- 
buted, this objection may be overcome. 

One possible problem with the analysis is that it 
does not extract the maximum information from 
the system, in that it does not provide a quanti- 
tative characterization of the stress-strain 
behaviour in the most highly damaged region of 
the specimen, namely, the tensile outer fibre. This 

problem is only of importance if the strain in the 
outer-fibre region becomes sufficient to activate 
an additional damage mechanism which is not 
experienced by the material at the 0.2 H location. 
Nevertheless, the amount of information provided 
from a bend test should be comparable to the 
amount provided from a tensile test, due to the 
greater stability of the bend specimen. To illustrate 
this point, consider the linear-damage law material, 
Equation 3. By Krajcinovic's [2] analysis tensile 
test failure would occur at e = 0.SD/E (Fig. 2), 
provided the loading system is not too stiff. 
Failure in a bend test would occur at eno m ~ 2/3 

(D/E) (Fig. 2) at this point ~ ~ 2/3 (Equation 7). 
In our analysis the stresses and strains are calcu- 
lated at a depth 0.2H, at which point the strain 
at maximum load from Equation 11 is about 
3/4enom ~ 0.5DIE. To the extent that this result 
is typical, a bend specimen can provide infor- 
mation about the stress-strain curve of a tensile 
specimen up to the strain at which the tensile 
specimen would fail. However, it should be 
reiterated that the maximum load failure criterion 
is not necessarily correct since it does not take 
into proper account the statistical nature of  
fracture of  brittle materials. 
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Appendix 
The method of calculation can be illustrated by 
deriving the relationships for the "elastic" law 
(Equation 1): 

o = Ee, compression (A1) 

o = AEe,  tension (A2) 

Using the notation of Fig. A1 the force in the 
tension part of  the beam F T is 

YT p 

FT = Jo aBdy (A3) 

Since y is measured from the neutral axis, 

Y T a  y - (A4) 
AEe T 

when eT and YT are outer-fibre values. 
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Combining Equations A3 and A4 

AEeTByT  
F T - (A5) 

2 

Similarly, for compression 

E e c B y c  
F c = - - -  (A6) 

2 

Since force equilibrium requires FT = Fc  

AeTYT = ecYc .  (A7) 

Letting ~-= Y c / Y T ,  Equation A7 becomes 

A = ,6 2 . (AS) 

The moment balance is 

f0' _ M = c o y  dy + oy dy (A9) 
B 

Using the above relationships, 

M EeTfl 2 
- (AI0) 

BH 2 3(1 + ~) 

Now 

YT (A11) 6 T = - -  
P 

where p is the radius of  curvature o f  the beam. 
Recalling the definition of  

H 
(A12) eT (1 + ~)p 

Equations A10 and A12 can be combined with 

Equations 5 and 6 o f  the text to give 

D - ~ . (A13) 

To calculate the stress at any point in the beam, 
first calculate the strain and express it in terms of  
z, the distance from the tensile outer fibre 

y T - - Z  
e - (A14) 

P 

Again recalling the definition of  ~ and using 
Equations 8 and 10: 

e = 1+(3 1 - - ( 1 + ~ )  . (A15) 

Combining Equations A2, A8, A13 and A15: 

O 

(/no m 

1 [  z] 
- 5(1  +/3) 1 - - ( 1 + 1 3 ) ~  . (A16) 

The analogous relationships for the other damage 
laws were derived by a similar procedure. 
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